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ABSTRACT
Despite the rapid advance of automatic speech recognition (ASR)
technologies, accurate recognition of cocktail party speech charac-
terised by the interference from overlapping speakers, background
noise and room reverberation remains a highly challenging task
to date. Motivated by the invariance of visual modality to acous-
tic signal corruption, audio-visual speech enhancement techniques
have been developed, although predominantly targeting overlapping
speech separation and recognition tasks. In this paper, an audio-
visual multi-channel speech separation, dereverberation and recog-
nition approach featuring a full incorporation of visual information
into all three stages of the system is proposed. The advantage of
the additional visual modality over using audio only is demonstrated
on two neural dereverberation approaches based on DNN-WPE and
spectral mapping respectively. The learning cost function mismatch
between the separation and dereverberation models and their inte-
gration with the back-end recognition system is minimised using
fine-tuning on the MSE and LF-MMI criteria. Experiments con-
ducted on the LRS2 dataset suggest that the proposed audio-visual
multi-channel speech separation, dereverberation and recognition
system outperforms the baseline audio-visual multi-channel speech
separation and recognition system containing no dereverberation
module by a statistically significant word error rate (WER) reduc-
tion of 2.06 % absolute (8.77 % relative).

Index Terms— Audio-visual, Speech separation, dereverbera-
tion and recognition.

1. INTRODUCTION

Despite the rapid progress of automatic speech recognition (ASR)
in the past few decades, accurate recognition of natural speech in a
complex acoustic environment represented by cocktail party [1, 2]
remains a highly challenging task to date. Multiple sources of in-
terference from overlapping speakers, background noise and room
reverberation lead to a large mismatch between the resulting mixed
speech and clean signals. To this end, microphone arrays play a
vital role in state-of-the-art ASR systems designed for overlapped
and far-field scenarios [3–5]. The required acoustic beamforming
techniques used to perform multi-channel array signal integration are
normally implemented as time or frequency domain filters. Earlier
generations of ASR systems featuring conventional multi-channel
array beamforming techniques represented by either time domain
delay and sum [6], or frequency domain minimum variance distor-
tionless response (MVDR) [7] and generalized eigenvalue (GEV) [8]
channel integration approaches typically adopted a pipelined system
architecture, containing separately developed speech separation, en-
hancement front-end and recognition back-end components.

∗ Equal contribution; This work is partly done when Jianwei Yu is an
intern in Tencent AI lab.

With the wider application of deep learning based speech tech-
nologies, microphone array signal integration methods have evolved
into a variety of DNN based designs in recent few years. These in-
clude: a) TF masking approaches [9, 10] used to predict spectral
time-frequency (TF) mask labels for a reference channel that spec-
ify whether a particular TF spectrum point is dominated by the tar-
get speaker or interfering sources to facilitate speech separation; b)
neural Filter& Sum approaches directly estimating the beamform-
ing filter parameters in either time domain [11] or frequency domain
[12] to produce the separated outputs; and c) mask-based MVDR
[5, 13, 14], and mask-based GEV [15] approaches utilizing DNN es-
timated TF masks to estimate target speaker and noise specific power
spectral density (PSD) matrices to obtain the beamforming filter pa-
rameters, while alleviating the need of explicit direction of arrival
(DOA) estimation.

In recent years, there has been a similar trend of advancing con-
ventional speech dereverberation approaches [16–18] represented by
weighted prediction error (WPE) [18] to their neural network based
variants. These include: a) the DNN-WPE [19, 20] method, which
use neural network estimated target signal PSD matrices in place of
those traditionally obtained using maximum likelihood trained com-
plex value GMMs [18] in the dereverberation filter estimation; and
b) the complex spectral masking [21, 22] approach learning a di-
rect TF spectral masking between reverberated and anechoic data.
Furthermore, the joint optimization of neural network based speech
separation, dereverberation and denoising components with a multi-
channel beamforming framework [23, 24] has been proposed as a
comprehensive and overarching solution to the cocktail party speech
problem, and has drawn increasing research interest.

Motivated by the invariance of visual modality to acoustic signal
corruption, and the complementary information provided on top of
audio modality, there has been a long interest in developing audio-
visual speech processing enhancement [25–28] and recognition [29–
33] techniques. To date, these prior audio-visual speech processing
researches were predominantly conducted in the context of either
only the speech enhancement front-end [25–28] or the recognition
back-end [30–34], while a holistic, consistent incorporation of visual
information in all stages of the system (speech separation, derever-
beration and recognition) has not been studied.

To address this issue, an audio-visual multi-channel speech sep-
aration, dereverberation and recognition approach featuring a full
incorporation of visual information into all three stages of the sys-
tem is proposed. The advantage of the additional visual modality
over using audio only is demonstrated on two neural dereverbera-
tion approaches based on DNN-WPE and spectral mapping respec-
tively. The learning cost function mismatch between the separa-
tion and dereverberation models and their integration with the back-
end recognition system is minimised using fine-tuning on the MSE
and LF-MMI criteria. Experiments conducted on the LRS2 dataset
suggest that the proposed audio-visual multi-channel speech separa-
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tion, dereverberation and recognition system outperforms the base-
line audio-visual multi-channel speech separation and recognition
system without dereverberation module by a statistically significant
word error rate (WER) reduction of 2.06% absolute (8.77% relative).

The main contributions of this paper are summarized below:
First, to the best of our knowledge, this paper presents the first use
of a complete audio-visual multi-channel speech separation, derever-
beration and recognition system architecture featuring a full incorpo-
ration of visual information into all three stages. In contrast, prior
researches incorporate video modality in either only the speech en-
hancement front-end [25, 26, 28], recognition back-end [30–33], or
both multi-channel speech separation and recognition stages [35, 36]
but excluding the dereverberation component. Second, a more com-
plete experimental validation of the advantage of audio-visual ver-
sus audio only dereverberation approaches of multiple forms (DNN-
WPE, spectral mapping) is presented, as previous research [37] only
considered the spectral mapping method.

2. AUDIO-VISUAL MULTI-CHANNEL SEPARATION

This section introduces the audio-visual multi-channel separation
component used before dereverberation in the overall system.

2.1. Audio and visual modality inputs

Audio modality: As is illustrated in the top left corner of Figure
1, three types of audio features including the complex spectrum, the
inter-microphone phase differences (IPDs) [13] and location-guided
angle feature (AF) [38] are adopted as the audio inputs. The complex
spectrum of all the microphone array channels are first computed
through short-time Fourier transform (STFT).
IPDs features were used to capture the relative phase difference be-
tween different microphone channels and provide additional spatial
cues for TF masking based multi-channel speech separation. These
can be computed as follows:

IPD
(m,n)
t,f = ∠(ymt,f/y

n
t,f ) (1)

where ymt,f and ynt,f denote the STFT’s TF bins of mixed speech at
time t and frequency bin f on mth and nth microphone channels,
respectively. The operator ∠(·) outputs the angle between them.
Angle features that are based on the approximated direction of ar-
rival (DOA) were also incorporated to provide further spatial fil-
tering constraint. In this work, the approximate DOA of a target
speaker, θ, is obtained by tracking the speaker’s face from a 180-
degree wide-angle camera, as is shown in the bottom left corner of
Figure 1. This allows the array steering vector corresponding to the
target speaker to be expressed as follows:

G(f) =
[
e−jφ1 cos(θ), e−jφr cos(θ), ..., e−jφR cos(θ)

]
(2)

where φr = 2πfd1r/c and d1r is the distance between the first
(reference) and rth microphone (d11 = 0). c is the sound veloc-
ity. Based on the computed steering vector, the location-guided AF
feature introduced in [28, 38] are also adopted to provide further dis-
criminative information for the target speaker as follows:

AF(t, f) =
∑
{(m,n)}

〈
vec
( Gn(f)
Gm(f)

)
, vec

( ymt,f
yn
t,f

)〉
∥∥vec

( Gn(f)
Gm(f)

)∥∥ · ∥∥vec
( ym

t,f

yn
t,f

)∥∥ (3)

where ‖·‖ denotes the vector norm, 〈·, ·〉 represents the inner product
and {(m,n)} denotes the selected microphone pairs. vec(·) trans-
forms the complex value into a 2-D vector, where the real and imag-
inary parts are regarded as the two vector components.

Following the previous researches on audio-visual multi-channel
speech separation [35, 36], temporal convolutional networks (TCNs)
[39] are used in the speech separation module. As shown in the left
corner of Figure 1, the log-power spectrum (LPS) features of the
reference microphone channel were initially concatenated with the
IPDs and AF features computed above before being fed into the TCN
based audio block to compute the audio embedding.
Visual modality: Considering the invariance of visual modality to
acoustic signal corruption, and the complementary information pro-
vided on top of audio modality, the visual feature of target lip move-
ments is extracted by a LipNet [40] as shown in Figure 1 (bottom
left, in light brown). The LipNet consists a 3D convolutional layer
and a 18-layer ResNet. Before fusing the visual features with the au-
dio embedding to improve the estimation, the lip features are firstly
fed into the visual block containing 5 TCNs (Figure 1, bottom left in
grey) to compute the visual embedding.
Audio-visual modality fusion: In this work, a factorised attention-
based modality fusion method consistent with our previous work
[35] was utilised in the separation module. This attention based fu-
sion block (Figure 1, left middle in dark brown) combines the audio
and visual embeddings from the outputs of the audio and visual TCN
embedding blocks respectively. The outputs of this fusion layer are
sent into the audio-visual (AV) embedding block containing 3 TCN
blocks (Figure 1, left middle in grey) to compute the final audio-
visual embedding features.

2.2. TF masking based speech separation

After modality fusion, the above audio-visual embeddings are fed
into 2 Conv1D blocks (Figure 1, left in yellow) to estimate the com-
plex ideal ratio mask (cIRM) mt,f of the target speech for the sepa-
ration module. The estimated speech complex spectrum is:

xt,f = mt,fy
r
t,f (4)

where mt,f ∈ C is the cIRM of the target speaker, yrt,f is the
reference channel complex spectrum of mixed speech (without loss
of generality, the first channel is selected as the reference chan-
nel throughout this paper), before being fed into the subsequent
audio-visual dereverberation component of the following Section 3.
Given the estimated complex spectrum, the time-domain separated
speech can be computed by the inverse short-time Fourier trans-
form (iSTFT) and the SI-SNR cost function is used to optimize the
separation neural networks.

3. AUDIO-VISUAL DEREVERBERATION

3.1. Audio-visual DNN-WPE based dereverberation

Let xt,f denotes the observed speech impaired by reverberation in
the STFT domain at time frame index t and frequency bin index f .
The desired signal d̂t,f can be obtained by inverse filter to subtract
the estimated tail reverberation from the observed signal [18, 19] as:

d̂t,f = xt,f −
D+L−1∑
τ=D

g∗τ,fxt−τ,f = xt,f − ĝHf xt−D,f (5)

where (·)∗ and (·)H operators denote the complex conjugate opera-
tor and conjugate transpose operator. D denotes the prediction delay
and L is the filter tap. xt−D,f and ĝf are vector representations of
the observed signal and filter weights at frequency bin index f with
L elements.
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Fig. 1. Illustration of the audio-visual multi-channel speech separation component (top left) and DNN-WPE or spectral mapping based
dereverberation modules (top right, and bottom right respectively), where yrt,f is the complex spectrum of each channel and xt,f is the
separated output. mt,f and and m′t,f are the complex ideal ratio masks of the target speaker for separation and dereverberation, where Re(·)
and Im(·) denote the real and imaginary parts. m̂t,f is the real-valued mask for DNN-WPE dereverberation of Eq. (7). Ref-A, Ref-B and
Ref-C denote reverberant speech, early reverberant speech and anechoic speech of the reference (1st) channel for model training respectively.

In conventional weighted prediction error (WPE) [18] derever-
beration, the filter weights ĝf are estimated as:

ĝf =

(∑
t

xt−D,fx
H
t−D,f

λt,f

)−1(∑
t

xt−D,fx
∗
t,f

λt,f

)
(6)

where λt,f = |d̂t,f |2 is the PSD of the target speech spectrum. In
DNN-WPE, λt,f is predicted by estimating the TF mask as follows:

λt,f = m̂t,f |xt,f |2 (7)

where m̂t,f ∈ R is the estimated TF mask produced by the DNN-
WPE module (Figure 1, top right in green) using audio embeddings
alone, or optionally fused audio-visual features as the input to lever-
age the invariance of video modality to reverberation in this work.

During training, the spectrum of the early reverberant speech
(with first 50ms reverberation following [20]) is adopted as the train-
ing target. The dereverberation module is optimized using the mean
square error (MSE) cost. Once the mask is predicted, ĝf can be
estimated to facilitate dereverberation.

3.2. Audio-visual spectral mapping for dereverberation

In addition to the audio-visual DNN-WPE approach, an audio-visual
spectral mapping approach is also proposed. As shown in Figure 1
(bottom right corner, in pink), the LPS of separated speech is firstly
fed into the audio block to compute the audio embeddings and then
concatenated with the lip embedding extracted from the visual block.
The concatenated audio-visual embedding are then forwarded into
the AV fusion block. Finally, the audio-visual embeddings are for-
warded into 2 Conv1D blocks to estimate the cIRMm′t,f of the non-
reverberant target speech. The estimated speech complex spectrum
can be obtained using Eq.(4). During training, the spectrum of the
anechoic speech is used as the training target and MSE is adopted as
the loss function.

4. INTEGRATION OF ENHANCEMENT FRONT-END &
RECOGNITION BACK-END

When designing cocktail part speech recognition systems, the sep-
aration, dereverberation and recognition components are often used
in a pipelined manner. However, the performance of such system
can be sub-optimal due to the mismatch among the different training

error costs used by the three components. To this end, a tighter in-
tegration between system components, for example, the separation
and dereverberation modules, can be achieved via joint fine-tuning
on the dereverberation MSE cost alone, or an interpolated SI-SNR
and MSE error loss function. 1 Their further integration of the au-
dio only or audio-visual CLDNN based back-end recognition com-
ponent was performed by fine-tuning using the LF-MMI sequence
training criterion [35] given the enhanced outputs.
Table 1. Performance of single channel ASR and AVSR systems
trained and evaluated on anechoic, early-reverberant, reverberant
and reverberant-noisy-overlapped speech. † denotes a statistically
significant difference obtained over the baseline (sys. 1, 3, 5, 7).

Sys Data +visual WER(%)
1 anechoic 7 13.87
2 3 12.28†

3 early-reverberant 7 18.29
4 3 13.51†

5 reverberant 7 23.35
6 3 17.61†

7 overlapped-noisy-reverberant 7 84.01
8 3 42.25†

5. EXPERIMENT & RESULTS

5.1. Experiment Setup

Simulated mixed speech: The multi-channel overlapped-noisy-
reverberant speech is simulated using the LRS2 dataset. A 15-
channel symmetric linear array described in [35] is used in the
simulation process. 843-point source noises and 40000 Room Im-
pulse Responses (RIRs) generated by the image method [41] in
400 different simulated rooms were used in our experiment. The
distance between a sound source and the microphone array center is
randomly sampled from the range of 1m to 5m and the room size
is ranging from 1m × 1m × 2m to 30m × 30m × 5m (length ×
width × height). The reverberation time T60 is sampled from a
range of 0.06s to 1.12s. The average overlapping ration is around
85%. The SNR is randomly chosen from 0, 5, 10, 15 and 20 dB, and
SIR from -6, 0 and 6 dB. The simulated dataset is split into three
subsets with 91.7k, 2.2k, and 1.2k utterances respectively for train-
ing, validation and test. Statistical significance test was conducted

1In this paper, we only show the MSE loss joint fine-tuning results since
using the multi-task loss gives limited performance improvement.
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Table 2. Separation, dereverberation and recognition on LRS2 overlapped-noisy-reverberant dataset. ‘Sep.’, ‘Dervb.’, ‘Recg.’ denotes
separation, dereverberation and recognition. ‘Anec.’ denotes ASR system trained on anechoic speech. ‘AF’ and ‘SpecM’ denotes angle
feature and spectral mapping. FT denotes fine tuning. ?, † and ‡ denotes statistically significant difference over baseline (sys. 1,2,3).

Sys Sep. Dervb. Recg. Anec. Pipeline Jointly FT (Sep.+ Dervb.) FT back-end
AF +visual method +visual +visual WER PESQ SRMR WER PESQ SRMR WER WER

raw 1 channel reverberant-noisy-overlapped 85.71 1.65 4.01 84.01 - -
1 3 7 - 7 53.29 2.30 6.20 39.38 - -
2 3 3 - 7 48.51 2.37 6.44 36.46 - -
3 3 3 - 3 33.23 2.37 6.44 24.92 - 23.50
4 3 7

DNN-WPE
7 7 51.76? 2.32 6.65 38.38 2.32 6.70 38.21? -

5 3 7 3 7 51.25? 2.33 6.70 37.96? 2.33 6.78 37.24? -
6 3 7

SpecM
7 7 51.94 2.37 7.79 38.08? 2.39 8.33 37.63? -

7 3 7 3 7 51.68? 2.38 8.00 36.98? 2.39 8.45 36.58? -
8 3 3

DNN-WPE
7 7 47.60 2.39 6.78 35.09† 2.40 6.90 34.52† -

9 3 3 3 7 47.55† 2.40 6.73 34.58† 2.41 6.93 33.69† -
10 3 3

SpecM
7 7 47.45† 2.46 7.55 34.31† 2.47 8.68 34.05† -

11 3 3 3 7 46.88† 2.48 7.77 33.44† 2.49 8.71 32.91† -
12 3 3 DNN-WPE 3 3 32.15‡ 2.40 6.73 23.69‡ 2.41 6.93 22.99‡ 21.91‡

13 3 3 SpecM 3 3 31.32‡ 2.48 7.77 22.72‡ 2.49 8.71 22.38‡ 21.44‡

at level α = 0.05 based on matched pairs sentence segment word
error (MAPSSWE) for recognition performance analysis
Implementation details: Details of the IPD, AF features and the
baseline audio-visual back-end ASR can be found in [35]. For
DNN-WPE dereverberation, the prediction delay D and filter tap
L were set to 3 and 18, respectively. The number of iterations for
parameter estimation in conventional WPE was set to 3.

Table 3. Performance of ASR systems trained on anechoic and dere-
verberated speech. ‘Anec.’ denotes ASR systems trained on ane-
choic speech. ‘Retrain.’ denotes the ASR systems trained on the
dereverberated data. † denotes a statistically significant difference
obtained over the corresponding audio-only baselines (sys. 2, 4).

Sys Dervb.
PESQ SRMR

WER(%)
method +visual Anec. Retrain.

- raw reverberant - 2.76 5.85 34.29 23.35
1 WPE [18] - 2.77 5.90 32.34 21.70
2

DNN-WPE
7 2.79 6.54 28.03 19.56

3 3 2.83 6.58 27.64 18.87 †

4
SpecM

7 2.92 7.67 27.94 19.52
5 3 2.97 8.05 27.53† 18.53†

5.2. Experiment Results

Speech recognition without front-end: Table 1 presents the WERs
of various LF-MMI based ASR and AVSR systems that contains no
separation and dereverberation components, trained and evaluated
on four types of data: anechoic, early-reverberant, reverberant and
overlapped-noisy-reverberant speech. It can be observed that using
visual information can significantly improve the recognition perfor-
mance over the audio-only systems. In particular, the audio-visual
recognition system trained on overlapped-noisy-reverberant speech
outperforms the audio-only system by up to 41.76 % (sys.7 vs sys.8)
absolute WER reduction on test data of the same condition.
Performance of audio-visual dereverberation: The performance
of various dereverberation approaches on reverberant only (non-
overlapping) speech are evaluated on ASR systems constructed
using anechoic or the corresponding dereverberated speech, and
shown in Table 3. It can be observed that adding visual information
in DNN-WPE and spectral mapping (SpecM) dereverberation pro-
duced consistent improvements in terms of PESQ [42], speech to
reverberation modulation energy ratio (SRMR) [43] and WER (sys.
2 vs sys. 3, sys. 4 vs sys. 5).

Performance on overlapped-noisy-reverberant speech: Their
performance are further evaluated on audio-visual multi-channel

speech separation, dereverberation system constructed using the
overlapped-noisy-reverberant data in Table 2, with either a partial,
or full incorporation of visual information into all three stages. Sev-
eral trends can be observed from Table 2: 1) Using visual feature
in both the separation and recognition components significantly
improves the recognition performance on both the anechoic speech
trained ‘Anec.’ and pipeline systems by up to 20.06 % and 14.46 %
(sys. 1 vs sys. 3), as well as the PESQ and SRMR scores. 2) In con-
trast to the pipeline systems only containing separation front-ends
(sys. 1, 2, 3), adding audio-only or audio-visual dereverberation
modules (DNN-WPE & SpecM) produced WER reductions ranging
from 1% to 2.4% (sys. 4, 5, 6, 7 vs sys. 1), 1.37% to 3.02 % (sys.
8, 9, 10, 11 vs sys. 2 ), 1.23% to 2.2% (sys. 12, 13 vs sys. 3).
Among these, leveraging visual modality in dereverberation module
consistently produced better performance with WER reductions up
to 1.1% absolute (sys.7 vs sys. 6). 3) Further jointly fine-tuning
the separation and dereverberation components using dereverbera-
tion MSE cost function (col. “Jointly FT (Sep.+ Dervb.)”, Table 2)
produced PESQ and SRMR improvements of 0.04-0.12 and 0.53-
2.27 points (sys. 12, 13 vs sys.3), in addition to consistent WER
reductions over the pipeline systems. 4) Finally, to tightly integrate
the enhancement front-end and recognition back-end, fine-tuning
three AVSR systems (sys. 3, 12, 13) on their respective enhanced
speech outputs (last col. Table 2) further reduced the WER while
retaining the same trend. The final fine-tuned AVSR systems with an
audio-visual dereverberation module outperform the baseline AVSR
system by 1.59%-2.06% in WER reduction (sys. 12, 13 vs sys.3).

6. CONCLUSIONS
In this paper, an audio-visual multi-channel speech separation, dere-
verberation and recognition approach featuring a full incorporation
of visual information into all three stages of the system is proposed.
The advantages of visual modality over using acoustic features only
is demonstrated on two neural dereverberation approaches based on
DNN-WPE and spectral mapping using the LRS2 dataset simulated
speech containing overlapping, noise and reverberation. Future re-
search will focus on improving the integration between the separa-
tion, dereverberation and recognition components.
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